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Abstract 

This paper describes how calorimetry may be used to obtain two sets of information, namely, 
(i) the internal energy of a material’s polymorphs by measuring their heat of solution as well as the 
effect of structural relaxation on this energy, and (ii) the amount of intergranular liquid (or 
a second solid phase) in polycrystalline solids. Experiments have confirmed the usefulness of the 
two methods, and have shown that a substantial amount ofliquid at thermodynamic equilibrium 
is present at the grain junctions in a polycrystalline solid, or that such solids premelt significantly. 
The formalism and concepts developed here are expected to apply equally well to polycrystalline 
solids, which undergo order-disorder phase transformation, and where the more disordered 
phase remains at the grain junctions of the ordered phase. 
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1. Introduction 

During his stay with us in 1984, Professor Suga had asked me if I thought there were 
further ways in which calorimetry could be used for understanding the behaviour of 
condensed matter. I had already used his and his coworkers’ data to learn about the 
entropy contribution from localized configurational states in disordered solids [l] and 
about a problem with the thermodynamic continuity of the amorphous solid and 
supercooled liquid water [2]-this problem has since been resolved [3,4]. So, at that 
time, I had no suitable reply. A decade of further experience has enabled me now to 
provide one. This article may henceforth be read as my tardy reply to Hiroshi Suga’s 
query in 1984. 

*Dedicated to Hiroshi Suga on the Occasion of his 65th Birthday. 
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Calorimetric studies provide, of course, a variety of information on a material’s 
molecular behaviour and its overall state. To this I would like to add two more 
properties of considerable significance which may be measured by suitable calorimetric 
experiments. These are: (1) the internal energy of polymorphs of a material; and (2) the 
amount of intergranular liquid (or a more disordered solid phase) in polycrystalline 
solids. Theoretical aspects of these properties and of the methods to determine them are 
described in this article, and abbreviated results from studies intended to examine them 
are given. Such measurements may be extended to a variety of materials. This may help 
in achieving a further understanding of their behaviour. 

2. The internal energy of a material’s polymorphs 

The current methods for determining the difference between the enthalpies H,,, or 
internal energies E,,, of two phases (polymorphs) of a material require measuring their 
C, from near 0 K to the desired temperature T, and determining the difference between 
their respective integrals 

Hex,(T) = 
s 

r(CP,, - C,,,)dT (1) 
0 

if no phase transformation occurred in either phase on heating to TK. To determine the 
difference between the internal energies at 0 K, H&,, one requires further C, data to 
a temperature TX where both phases have transformed into a single phase, usually on 
melting congruently. In a general case of two polymorphs, 1 and 2, undergoing phase 
transformation, each at its characteristic temperature, T, and T2, to the same third 
phase at a temperature TX above T2, H&, is given by 

H..c=(S:‘C,zdT-Sb’C~,,dT)+S:_:C~,~dT+AH,,,-AH~., (2) 

where the phase transformation temperature T2 > T, and AH,,1 and A Ht,2 are the heat 
of transformation of each phase to a third phase of heat capacity, C,,,. For vitreous and 
crystalline phases 

s TX Tm TX 
H,“,, = Cp,vit d T - s Cp,crysd T - AH, - 

s 
Cp,,iqdT 

0 0 7-m 
(3) 

The underlying principle of the above method is that when two phases of a material 
are brought from their different initial energy states to the same final energy state, the 
difference between the energy evolved (or absorbed) in doing so is equal to H,,,. 
H,,, can also be determined by an alternative method in which two polymorphs of 

a material are dissolved in the same solvent at the same temperature. The difference 
between their heats of solution will be equal to the difference between the energies of 
their initial states at that temperature, because the final states of the two polymorphs 
dissolved in a given solvent are the same. Bianchi et al. [S] and Filisko [S] have indeed 
proposed this method for determining the difference between the structures of organic 
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polymers. To elaborate this concept we consider the total energy change in the process 
in terms of the internal energy, instead of the enthalpy, because we use constant 
pressure, one atmospheric condition under which the pressure-volume pdT/term is 
negligible. 

In absolute terms, the difference between the enthalpies or energies of two poly- 
morphs is written as 

H,,, = (E” + C E&,ase 1 - (E” + ;r: @,,,me 2 (4) 
XEi = Evib + Ebond + Econf 

(5) 

where E” is the energy at 0 K (sum of the lattice and zero-point vibrational energies), 
and E’ is the internal energy associated with the ith feature at T above 0 K, i.e. Evib for 
the vibrational, Ebond for the cohesive Van der Waals, covalent and hydrogen bond 
energy terms as the volume changes, and Econf for the configurational contributions 
arising from rotameric or rotational transitions of molecular segments in the structure. 

The heat of solution is written as 

H” = (E” + X Ei),& - HE” + =?so,u + (E” + C %,J (6) 
where the subscript soln, solu and solv outside the brackets refer to the energy terms for 
solution, solute and solvent, respectively, and E” and CE’ are as defined for Eq. (4). The 
meaning of Eq. (6) is that the magnitude of H” depends also upon the magnitude of Ezo,,. 
If Ezo,, is large, H” may be positive; if small it may be negative. When the solvent is the 
same for the dissolution of different phases at a given temperature, (E” + CEi),,l, is the 
same for each case, as is (E” + CEi),,,,. Thus, these two terms cancel each other when 
Eq. (6) is used to obtain H,,, 

H,,, = -(H; - H;) (7) 

where H”, and Hi are the heats of solution of the two phases in a solvent at a fixed 
temperature. Thus the measurements of H” will yield the enthalpy difference between 
different structures of a material. This is illustrated in Fig. 1. 

Measurements of C, against the temperature T of two phases yield the difference 

where CE’ is defined by Eq. (5) and subscripts 1 and 2 refer to the two phases of 
a material. By combining Eqs. (4), (7) and (8) and rearranging 

H,,, = E: - E; + 
s 

T (C,,, - C,,,)dT (9) 
0 

and on substituting Eq. (7) in (9) 

E: - E; = - (H; - H;) - 
s 

T(C,,l - C,,,)dT (IO) 
0 

Thus the difference between the internal energies of two phases at OK can be 
determined from their heats of solution and the calorimetric enthalpy (known from the 
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crystal or state 1 
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Fig. 1. The enthalpy of two states, 1 and 2, of a material and that of its solution. The curves illustrate (a) 
different amounts of heat absorbed and (b) different amounts of heat evolved on dissolution in a solvent. In 
(c), the curves show heat absorption when state 1 is dissolved and heat release when state 2 is dissolved. The 
effect illustrated in Fig. l(c) has been observed for highly viscous glucose monohydrateand for glassy sucrose. 

C, measurements) at that temperature. It should be noted that the use of Eq. (7) for 
determining E&, requires no knowledge of the enthalpy of melting or of other phase 
transformations. Hence Ez,, of materials which melt incongruently, particularly many 
inorganic and most biological materials, may be determined by our procedure. This 



G.P. JohariJThermochimica Acta 266 (1995) 31-47 35 

seems particularly valuable because E,“,, of such materials cannot be determined by the 
usual calorimetric methods. 

To examine whether the procedure can be used successfully for materials, Salvetti 
et al. (in preparation) have measured the heats of solution of glassy and crystalline 
sucrose and viscous liquid and crystalline glucose monohydrate in pure water. They 
have found that heat is absorbed when crystalline sucrose dissolves in water and 
evolved when glassy sucrose does the same. This is an example of the case in Fig. 1 (c). 
They also observed that more heat is absorbed when crystalline glucose monohydrate 
dissolves in water than released when its highly viscous liquid state dissolves in water, 
as is the case in Fig. 1 (c). 

I now consider the use of this method for studying the internal energy of amorphous 
solids, particularly glasses in their various states of structure. It is appropriate to recall 
that one of the characteristics of a glass is that its enthalpy decreases on spontaneous 
structural relaxation during its physical ageing, or as its fictive temperature Tr 
decreases spontaneously. (Tr is the temperature at which a metastable liquid in an 
internal equilibrium has the same energy as its glass.) As this occurs, Ez,, also decreases 
with T,, so that the curve for H of glass plotted against temperature bodily moves closer 
to that of the crystal, but not by the same amount at all temperatures because both the 
vibrational contributions to the enthalpy of glass, and contributions from the availabil- 
ity of configurational states associated with its sub-T, relaxations, also decrease, 
particularly when the glass densifies on ageing. This means that the exothermic HS will 
decrease, or the endothermic HS will increase on structural relaxation during the 
physical ageing of a glass. So, the heat of solution of a glass will be found to vary with its 
thermal history, as illustrated in Fig. 2, which corresponds to Fig. 1 (c). This variation 
has now been observed in experiments on vitrified sucrose, thus confirming that the 
method proposed here can also be used for determining the thermal history and 
structural relaxation of vitrified solids. In my view, it may turn out to be an economic 
and more accurate alternative to the DSC and adiabatic calorimetry methods currently 
used for determining the change in the energy of a glass on its structural relaxation. The 
accuracy with which this change in energy can be determined depends upon the total 
heat of solution. If the latter is large in magnitude, relatively small differences between 
the heats of solution of two polymorphs may not be accurately determined. So, the 
accuracy of the method depends upon the position of the curve for solution relative to 
others in Figs. 1 and 2. The choice of solvent allows one to have some control over the 
magnitude of the heat of solution. 

The heats of solution of inorganic and organic substances and metals have of course 
been widely studied for examining the validity of Raoult’s and Henry’s laws and for use 
in technology. Such data appear in tabulated form in handbooks of chemistry and 
physics. Drs. J.M. O’Reilly and I.M. Hodge, who read this manuscript, pointed out that 
a considerable amount of similar work has been done also for polymers not only for 
developing criteria for miscibility of polymer blends [IS], but also for studying the 
swelling of polymers and the thermodynamics of polymer solutions in general [7-lo]. 
In one particular study, they pointed out to me, the difference between the heat of 
solution of quenched atactic poly(methy1 methacrylate) was measured in o-dichlo- 
robenzene [lo], and it was found that the heat of solution is more exothermic for the 
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Fig. 2. The spontaneous decrease in the enthalpy of a glass on physical ageing, and its effect on the heat of 
solution. The illustration corresponds to conditions in Fig. l(c). Conditions for Figs. l(a) and l(b) are not 
shown here. It should be noted that for conditions in Fig. l(a), ageing will increase the heat absorbed and for 
l(b), ageing will decrease the amount of heat released. Part of the effect illustrated in the figure has been 
observed for glassy sucrose. 

quenched sample than for the as-reprecipitated sample at 3 13-328 K. This seems to be 
in accord with the illustration in Fig. 2. However, the authors [lo] also observe that at 
328 K and higher temperatures, the heats of solution of the quenched and as- 
reprecipitated samples became identical, which is not in accord with the illustration in 
Fig. 2. The authors [lo] attributed this occurrence to crystallization of isotactic 
poly(methy1 methacrylate) impurities whose T. is w 328 K. So, at least in a limited 
sense, one set of data on polymers does agree with our conclusion, implicit in Fig. 2, 
that a quenched sample will have a higher heat of solution than an annealed one. 

3. Intergranular liquid in solids and the solid’s extent of premelting 

Most solids used commonly are polycrystalline, containing crystal grains of different 
sizes which form grain junctions where their boundaries meet. The requirements for 
a temperature-dependent new equilibrium between the interfacial free energy and 
enthalpy of melting causes the curved solid/liquid interface (boundary) to change in 
magnitude by melting or refreezing at the grain junctions. Hence, the liquid formed by 
the melting of crystal grains can remain at thermodynamic equilibrium with the solid, 
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when confined to these grain junctions, even in the absence of any dissolved impurities, 
and so a small amount of (impurity-free) solid premelts, or melts below its usual 
thermodynamic melting point [ 1 I- 141. 

These grain junctions alter the physical properties of a solid and control the mass 
transfer of a liquid near its melting point. Materials produced by rapid solidification 
technology and by devitrification, as for example glassy water [3] and glassy metals, 
have grain sizes as low as 10 nm. Thus these solids contain a large population of grain 
junctions filled with crystal melt, as in ice, or a multicomponent melt of a different 
composition, as in devitrified metallic glasses and ceramics, which affects their electrical 
[ 151, mechanical and thermodynamic properties. The stability, and volume, of inter- 
granular liquids in solids are, therefore, of considerable general interest. The ther- 
modynamics of such solids can be written exactly in terms of the free energy changes 
that occur when grain junctions form, and this allows us to calculate the stability as well 
as the volume fraction of liquid phase present in a polycrystalline solid. This is done in 
the following, but before doing this we note that all concepts and formalism given 
hereafter apply equally well to substances undergoing solid-solid phase transforma- 
tion with a change in entropy, i.e. first-order phase transitions. The high-temperature 
phase here is considered to be a liquid, but for solid-solid, order-disorder phase 
transformation, it would be the (more) disordered phase. All notations used here for the 
liquid will then refer to the high-temperature disordered solid phase. So, the formalism 
and discussion given here may be seen as generally valid when first-order phase 
transformations occur in polycrystalline solids. 

3.1. Geometry and free energy of grain junctions 

The geometry of two principal types of grain junctions is illustrated in Fig. 3, where 
(i) a curvilinear four-grain junction and (ii) the cross section of a vein formed by the 
meeting of three grains at 120” to one another are shown. A vein is considered to have 
a symmetrical cross section similar in shape to an equilateral curvilinear triangle. Both 
the volume of the pocket formed where four grains meet and the cross section of the 
vein are fixed by the dihedral angle 20. The volume of the pocket at the four-grain 
junction is given by 

t$‘PPJp3 (fla) 

where p1 is a dimensionless quantity related to the geometry of the pocket, as defined 
before [ 141, and R, = J6(h/ cos 0) with h defined in Fig. 3 here and in Ref. [14]. 

The area of cross section or the volume per unit length of the vein formed at the 
three-grain junction is given by 

A,=qR,2 (lib) 

where R, is the radius of curvature of the sides of the vein and c1 is a dimensionless 
quantity contained in square brackets in Eq. (2) in Ref. [ 143. The volume of the liquid 
phase at thermodynamic equilibrium in relation to the grain structure, when no 
impurities are present, is determined by the relative surface energies of solid-solid and 
solid-liquid interfaces as well as by the temperature. This may be expressed in terms of 
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(b) 

Fig. 3. (a) An illustration of the cross section of a vein filled with a liquid where three grains meet, Veins form 
at the expense of solid-solid grain boundaries. The figure is drawn for a dihedral angle of 25”. (b) An 
illustration of the four-grain junction forming a pocket from whose corners emerge the four veins; h refers to 
the distance as indicated. 

free energy changes that occur when (i) solid melts to fill grain junctions, (ii) part of the 
grain-grain boundary vanishes, and (iii) grain-liquid interface forms at places where 
the grains meet and pockets of liquid form. For the formation of these pockets, the first 
of the above given three increases the free energy by 

AG,,,, = V,AG, = prAG,R; (12) 

where AG, (= A TAS,JVm) is the free energy for melting, AS,,, being the entropy of 
melting per mole, V, the molar volume, and A T the undercooling below the melting 
point, T,(AT = T, - T, where T is the temperature below T,). The enthalpy of 
melting, AH, = T,,,AS,. 

The disappearance of a part of the grain-grain boundary decreases the surface free 
energy by an amount 

AG&,, = P&J; (13) 

where YBb is the grain boundary surface energy, and p2 a dimensionless geometrical 
quantity [ 143. 
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The increase in the free energy at the solid-liquid interface at the pocket is given by 

A ‘int,p = P3 ‘intRi (14) 

where Yint( = Y,,/2cos 0) is the grain-liquid interfacial energy and p3 is a dimensionless 
geometrical quantity [14]. 

The corresponding terms for the formation of veins where three grains meet are 

AC,,., = A,AG, = clAG,R,2 (15) 

AG,,,, = ~2 rg& (16) 

and 

AGint,v = ‘3 ‘int Rv (17) 

where cr, c2 and c3 are the dimensionless quantities related to the geometry as defined 
before [14]. All free energies are for unit volume of the pockets and for volume per unit 
length of the veins, and it is assumed that Ygb, B and AS, do not vary with AT 

In the absence of impurities, the total change in the free energy on the formation of 
grain junctions is given by 

AG=AG,,-AG,,+AGint (18) 

By eliminating the Ygb terms and differentiating Eq. (18) with respect to R, we obtain for 
conditions (a G/dR) = 0 

for a pocket containing liquid at a four-grain junction. 
Similarly for veins of water, we obtain 

R &t ‘int ‘m 
v,eq AC, AS,AT 

(19) 

(20) 

The total volume of liquid contained in all grain junctions per unit volume of a solid 
or the volume fraction of the liquid at thermodynamic equilibrium at a given 
temperature and pressure is written as 

q = N, VP + (1, - 4hNJ A, (21) 

where N, is the number of pockets and 1, the total length of veins per unit volume of ice; 
VP and A, are defined by Eqs. (1 la) and (1 lb), but with the radii ofcurvature referring to 
their equilibrium values, and h is the distance from the center of the curvilinear 
tetrahedral pocket to the plane of its truncation, as illustrated in Fig. 3(b) 

(22) 

For N, number of uniform size or equiaxed grains per m2 of a planar section, the 
grain size, a = 1 JJN, m. The total number of four-grain junctions or pockets per m3 of 
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the solid is given by [ 141 

(23) 

The total length of randomly located veins in meters per m3 of the solid, 1, = 4N,, or 
(4/a2). By substituting for N,, I, and h in Eq. (21) the volume fraction of a liquid or the 
total volume of a liquid per unit volume of the solid becomes 

V, = u,/(ui + us) = 4(z, - z2)(aAT)-3 + 4z3(aAT)-2 (24) 

wherez, = 8p,e3 m3K3,z2 = 8c,e3cos O/J6 m3 K3, z3 = c1 e2 m2 K2 and e = Yint V,/ 
AS,,,; pi and c1 are geometrical terms and e the thermodynamic term. Their definitions 
are given in Ref. [14]. The total volume of a liquid at the grain junction varies with 
temperature according to the magnitudes of the constants zi, z2 and z3, which are 
a characteristic of a solid. For a given solid, it varies largely according to the inverse of 
A T3 when AT -K 1 K and the inverse of A T2 when A T 2 1 K. 

According to Eq. (24), the total volume fraction of liquid in the pockets varies 
inversely with the cube of the grain size and in the veins with the square of the grain size 
at a constant temperature. For a given grain size, it varies inversely with the cube of AT 
for pockets and with the square of AT for veins. Note that the use of Eq. (24) for 
calculating the volume fraction is limited to certain conditions which require that the 
grain size be not less than twice the radius of curvature of the surfaces at the grain 
junctions. Since the radius of curvature of the surface is controlled by Yint, V,, AS, and 
AT (and grain size is not), this puts a lower limit for A T for a given solid. In general, no 
combination of grain size, Yint, V, and AT should yield a volume fraction of liquid at 
grain junctions greater than 0.5 in an impurity-free polycrystalline solid at ther- 
modynamic equilibrium. 

The total free energy of an impurity-free polycrystalline mass in equilibrium at 
a certain temperature and pressure is the appropriately weighted sum of the A G,i, A G,, 
and AGint terms. This weighting is with respect to the volume of all the pockets and 
veins in a polycrystalline solid, as described by Eqs. (19)-(22) in Ref. [14]. 

To illustrate the thermodynamics of polycrystalline solids, ice is used as an example. 
The total free energy of ice for grain size 0.1 mm was calculated from Eq. (18) and is 
plotted against the volume fraction of water at equilibrium in ice at 272.16K 
(AT = 1 K) and 272.66 K (A T = 0.5 K) in Fig. 4. The two curves show a minimum at the 
equilibrium volume fraction of water which becomes deeper and moves to a larger 
volume fraction on increasing the temperature. 

The effect of heating, and cooling, polycrystalline ice can now be expressed by 
drawing paths through the curves in Fig. 4. When ice kept at, say, 272.16 K (A T = 1 K) 
is instantaneously heated to 272.66 K (AT = 0.5 K), its free energy instantaneously 
decreases along a vertical path from point 1 to 2 on the curves corresponding to the two 
temperatures. The ice is no longer in its lowest free energy state and it melts at the grain 
junctions. Pockets of water grow in size and the veins dilate until the total volume of 
water corresponds to the new minimum denoted by 3 on the free energy curve. During 
this occurrence, A G,,, A G,, and A Gin, will all decrease with increase in A T. Now, if the 
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Fig. 4. The free energy change per m3 of ice containing 0.1 mm size grains calculated for 272.16 and 272.66 K 
is plotted against the volume fraction of water in the ice. The path through the points 1 + 2 + 3 + 4 describes 
the melting and refreezing as discussed in the text. 

ice is instantaneously cooled to 272.16K, the total free energy instantaneously in- 
creases to point 4 and since ice is no longer in the lowest free energy state, a certain 
amount of water freezes, the veins and pockets contract, and the total volume of water 
will decrease to the equilibrium value denoted by 1. The path 1 + 2 --f 3 represents 
melting of ice at the grain junctions, and dilation of the water-containing pockets and 
veins; the path 3 + 4 + 1 represents freezing of water at the grain boundaries and 
contraction of the water-containing pockets and veins. Since melting and freezing are 
almost instantaneous, a path connecting the free energy minima for different tempera- 
tures will describe the reversible change in the volume fraction of water on thermal 
cycling of ice. The thermodynamic path 1 + 2 + 3 represents an absorption of heat 
without a temperature rise (as the latent heat for melting or AH,), and the path 
3 + 4 -+ 1, a liberation of heat without a temperature decrease (as latent heat for 
crystallization, or - AH,). If ice initially contains dissolved impurities, the positions of 
the minima 1 and 2 will shift towards the right on each cycle as impurities become 
concentrated in water. Thus in an impurity-containing ice, the volume of water would 
increase with time. The observations of Fig. 4 are expected to be generally true for 
polycrystalline solids. 

It is evident in Fig. 4 that a substantial amount of water exists in pure ice at 
thermodynamic equilibrium below its melting point, or that ice premelts. The amount 
changes mainly with the inverse square of the product of the grain size and undercool- 
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ing according to Eq. (24) when its temperature reaches close to the melting point. The 
volume fraction of water for 1 mm grain size is 3.06 x 10e6 for AT = 0.01. This volume 
of course increases when impurities are present. 

The above-given calculations give theoretical basis to the conclusions obtained from 
the measured properties of microcrystalline solids. Dielectric measurements of micro- 
crystalline cubic ice produced by devitrification of hyperquenched glassy water and 
vapour-deposited amorphous solid water had shown that microcrystalline cubic ice 
has a considerably high dielectric loss at temperatures 150-170 K which is attributed to 
the presence of water at grain junctions, and that this loss vanished when the grain 
growth was allowed to occur on thermal cycling to high temperatures but without 
transforming to hexagonal ice [ 151. Such amounts of liquid in a fine grained solid at 
thermodynamic equilibrium will affect the compressibility, expansion coefficient and 
creep and fracture behaviours, particularly at temperatures when the liquid is not 
highly viscous or glassy. 

When a polycrystalline solid premelts, it is expected that its measured heat capacity 
will be higher than that of its single crystal, for two reasons. (i) The heat capacity of the 
liquid contained at grain junctions is higher than that of the solid by an amount which 
is the sum of the contributions from the configurational degrees of freedom in the liquid 
and the differences between the low-frequency vibrational frequencies of the liquid and 
the crystal. This extra heat capacity is equal to the product of the C, and the mole 
fraction of liquid per mole of the polycrystalline mass. (ii) The heat needed to melt the 
solid when the volume fraction of the liquid at equilibrium in its grain junctions 
increases on raising the temperature by 1 K. This is the latent heat, which does not raise 
the temperature. (This melting may be envisaged as an ideal heat sink.) Thus the total 
heat needed to raise the temperature of one mole of impurity-free polycrystalline solid 
by 1 K, or its measured C,, is given by 

C p,meas = X,C,,, + X&I +A%(X,,or~6T) - X1.0) dT- t (25) 

where X, and X, are mole fractions of the solid and liquid, respectively, in ther- 
modynamic equilibrium at an average temperature of (T,,, - AT + l/2 6T). AT is the 
undercooling, and 6T is the increase in the temperature observed during the C, 
measurement after a known amount of heat is given to the solid sample. (Multiplication 
of the last term by 6T- ’ converts the quantity to per degree increase in temperature, as 
is required.) By substituting (1 - X,) for X, and AC, for (C,,, - C,,J, the excess 
measured C, of polycrystalline solid over that of single crystal solid is given by 

C P,,,,=X,ACp+AH,(X1,(~T-6T)-X,,*T)~T~1=(AHmAX,)/6T (26) 

X, = (u,p,/(u,p, + u,p,)), where u and p are the volume and density, respectively. X,AC, 
is usually less than 10m3, so it may be neglected and X, is the amount of liquid, 
calculated from Eq. (26). 

From Eq. (26), it follows that Cp,exc will vanish when X, and AX, vanish and the 
measured C, will be equal to the true C, of the solid. Except for single crystal solids, 
C p,exc > 0, and for these the measured C, is the sum of three terms, C, of the crystal, C, 
of the liquid, and the heat of melting divided by the temperature increase observed, all 
appropriately weighted by the mole fraction of the component. Amongst these, the last 
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contribution, (AH,AX,/hT) depends upon 6T because AX, increases nonlinearly with 
6T To show this, I write Eq. (24) in the form 

Av=4(zl -22) 1 1 1 4% [ 1 1 
+T _- 

1 u3 (AT+6T)3 AT3 (AT+6T)2 AT2 1 (27) 

In Eqs. (24) and (25), the term ui is several orders of magnitude less than the term u,. 
Hence, the magnitude of u, (and o,,,) in the denominators for the expressions for &:, X, 
(and X,) may be neglected. Dividing X, by Vi and taking the values at two temperatures 
to obtain AX, and A v, yields 

AX, = (P,/P,)A V (28) 

To illustrate how AX, varies with 6 T, I use the values of zi, z2 and z3 for ice from 
Ref. [ 143, assume a = 1 urn, pi_ = 0.93 and p,,,,, = 1.0 g ml- ‘, and calculate AX, for 
AT= 0.5,0.6, 1 and 2 K from Eqs. (26) and (27). This AX, or AX,,,,, is plotted against 
6T in Fig. 5. The progressively increasing slope of the plot with increase in 6 T and with 
decrease in A T clearly shows this non-linear dependence. 

The increase in C, observed in calorimetric measurements may be interpreted in two 
ways. Firstly in terms of the amount of heat consumed in melting AX, amount of solid 

I 

0 0.05 0.10 0.15 

6T/K 

Fig. 5. The mole fraction ofintergranular water in polycrystalline ice ofgrain size 1 pm is plotted against 6 T, 
the increase in temperature measured on heat input, as in the C, measurement for different AT, the 
undercooling below the triple point of ice. The plot was calculated from Eqs. (27) and (28). 
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to AX, amount of liquid without an increase in temperature-this is numerically equal 
to AH, AX,-and the remainder consumed in raising the sample’s temperature which 
contains both the solid and mtergranular liquid. Secondly, in terms of the amount of 
solid melted which predicts that for a fixed Cp_ and 6 T, AX, is high when AH, is low, 
and for a fixed AX, and 6T, C,,,,, is high when AH,,, is high. The validity of this 
statement and of the statement that the heat consumed in crystal melting is equal to 
AH,,, AX,. can be tested by further measurement of C, of materials of the same grain size 
but different AH,. 

Both the heat consumed in premelting and AX, may be determined when the amount 
of heat input and the observed rise in temperature, bT, of polycrystalline and 
large-crystal or single-crystal samples are known. For a polycrystalline sample, it yields 
the apparent C,, for a single crystal the true C,. This has been done for polycrystalline 
ice using different amounts of heat input. 

Experiments by Salvetti et al [16] have shown that as much as 50% of the heat input 
is consumed in melting a small fraction of the solid at grain junctions in polycrystalline 
ice at - 0.6”C, and the rest in raising the temperature of the sample. For example, in the 
measurement with heat input of 2.4 J to - 1 urn size grains containing polycrystalline 
ice at -0.6”C, the rise in temperature observed was 32.1 mK. This gave C, meaS = 74.8 J 
mol- ’ KP ‘. For large-crystal (or single-crystal) ice, Cp,,,_ = 40.6 J mol- i K-‘. Thus, 
C p,exc = 34.2 J mol- ’ K ’ and from Eq. (26) A H,AX,,,,, is 1.1 J, which is 46% of the 
heat input used for the C, measurement. Substituting 6.01 kJ mol- ’ for AH,, AXwater 
formed on melting is 19.6 x 10m5. When the heat input was 1.2 J, AX,,,,, was 
7.3 x 10m5 and when it was 0.6 J, AX,,,,, was 3.25 x 10-5. The experiments also 
demonstrated that C p,meas or the apparent C, of polycrystalline ice at - 0.6”C increased 
from 58.2 to 74.8 J molP1 K-’ when the heat input used for the measurement was 
increased from 0.6 to 2.4 J. An abbreviated set of Salvetti et al.‘s [16] C, data for 
polycrystalline ice are shown in Fig. 6. These observations seem to confirm generally 
the conclusions of the formalism for premelting given in Ref. [14]. 

The amount of liquid at equilibrium with the solid or the extent of premelting may be 
determined from Eq. (24), provided the grain size, AH,, the dihedral angle between the 
liquid and solid, and the interfacial (liquid-solid, and soliddsolid) energies are known. 
(This calculation does not require C, data.) But if the temperature rise, 6 7; on giving 
a certain amount of heat is known, as in the C, measurements, AX, can also be 
calculated from Eq. (27). For the theory to be valid, AX, calculated from Eq. (27) 
should agree with that calculated from Eq. (26). This too has been examined by Salvetti 
et al.‘s experiments [16]. From Eq. (27) and 6T of 32.1 mK, 19.52 mK, and 10.3 mK, 
for heat input of 2.4, 1.2 and 0.6 J to polycrystalline ice assumed to contain uniform 
crystal grain size of 1 urn at -0.6”C, I calculated: Ax,,,,, = 16.6 x lo-‘, 9.8 x 10m5 
and 5.0 x lo- ‘, respectively. The corresponding values calculated from Cp,_ data and 
Eq. (26) are: 19.6 x 10e5, 7.3 x 10m5 and 3.25 x 10e5. The first set of AX,,,,, differs 
from the second set by - 18% to + 36%. The difference was less when the heat input 
used was large or ST was large. These discrepancies may arise partly from our 
assumption of a uniform grain size. 

Salvetti et al. [16] also found that when ice was aged for 3.5 months at 248 K, its 
C p,meas increased as the dissolved gaseous impurities in ice crystals diffused from the 
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Fig. 6. (a) The measured C, of microcrystalline ice (A) and large- or single-crystal ice (0) is plotted against 
the temperature of the sample. Data are taken from Ref. [16]. (b) The measured C, of microcrystalline 
ice at -2” and -0.6”C and of water at +0.4”C is plotted against the power input in mW. The heat input 
is 30 times the power input. The data points are for 0.6, 1.2 and 2.4 J of heat input and are taken 
from Ref. [16]. 



46 G.P. JohariJThermochimica Acta 266 (1995) 31-47 

grains into the intergranular water, lowered its triple point (and thereby decreased A T), 
and altered both the dihedral angle and the water-ice interfacial energy. In such a case, 
C p,meas is expected to reach ultimately a limiting value when the solubility equilibrium 
of impurities between the solid and liquid phases has been attained. This prediction is 
yet to be tested by an experiment. 

Measurements of C, of ordered polycrystalline solids below their order-disorder, 
solid-solid phase transformation temperatures are also needed in order to determine 
whether or not the above given concepts are experimentally verifiable, generally. 

4. Concluding remarks 

It is demonstrably clear that the two procedures for obtaining further information 
from calorimetry can be put into practice relatively easily, and the internal energy of 
a solid and the amount of liquid (or another solid present in the case of solid-solid 
phase transformation) present in polycrystalline solids be determined. Once the 
magnitude of the properties determined for several materials is confirmed by other 
measurements, e.g. internal energy from C, measurements, and the amount of inter- 
granular liquid (or a second solid phase) from energy diffraction measurements by 
suitable (but not yet available) methods, the technique proposed here can be used more 
efficiently and more economically than the other techniques. 

I believe it would be useful to extend these studies to a wider class of materials and 
develop procedures for measuring accurately the heat of solution and C, at tempera- 
tures close to the melting point of a solid. When more and accurate data become 
available, theoretical treatments of the zero-point internal energy of glass, to which 
attention is now being directed [17], and of the structure of intergranular liquid in 
solids may become possible. 
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